Tetrahedron 57 (2001) 7477-7480

Malabanones A and B, novel nortriterpenoids from Ailanthus malabarica DC

Yukio Hitotsuyanagi,^a Akira Ozeki,^a Chee Yan Choo,^b Kit Lam Chan,^b Hideji Itokawa^a and Koichi Takeya^{a,*}

^aSchool of Pharmacy, Tokyo University of Pharmacy and Life Science, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan ^bSchool of Pharmaceutical Sciences, University of Science Malaysia, 11800 Penang, Malaysia

Received 8 June 2001; accepted 11 July 2001

Abstract—Novel octanor- and nonanor-triterpenoids, malabanones A (1) and B (2), which incorporate a unique tricyclo[4.3.1.0^{1.6}]decane unit in the structure, were isolated from the stem bark of *Ailanthus malabarica* DC. Their structures were elucidated by the analysis of spectral data. Compounds 1 and 2 were considered to be biosynthesized from ailanthol (3), which was also isolated from this plant. © 2001 Elsevier Science Ltd. All rights reserved.

Ailanthus malabarica DC (Simaroubaceae) is a large tree distributed in India and Indo-China, and is regarded as an important medicinal plant useful for the treatment of dysentery, dyspepsia, febrifuge and bronchitis. ^{1,2} From this plant, a cycloapotirucallane triterpenoid ailanthol (3), which possesses a unique tricyclo[4.3.1.0^{1,6}]decane structure, has been isolated. ³ In the present study, from this plant, we isolated two novel nortriterpenoids malabanones A (1) and B (2), both relating to 3 in structure. Compounds 1 and 2 are unusual octanor- and nonanor-triterpenoids, respectively, with no sidechain on ring D.

Ground stem bark of A. malabarica collected in Malaysia

was extracted successively with hexane, CH₂Cl₂ and MeOH. The CH₂Cl₂ extract was placed over a Si gel column and eluted with CHCl₃ containing an increasing amount of MeOH. Further purification by MPLC (Si gel and RP-18) and HPLC (ODS) afforded **1** (0.00013%), **2** (0.00015%) and **3** (0.035%). Compound **3** was identified as ailanthol by comparing its spectral data with reported ones.³

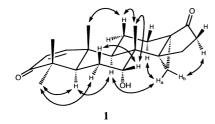

Malabanone A (1) was obtained as amorphous powder. Its molecular formula was determined to be $C_{22}H_{30}O_3$ by the $[M-H_2O]^+$ ion peak at m/z 324.2061 (calcd 324.2089 for $C_{22}H_{28}O_2$) in the HREIMS. Its ¹H NMR spectrum showed the presence of four tertiary methyl groups (δ 1.10, 1.14,

Figure 1.

Keywords: malabanones A and B; nortriterpenoids; Ailanthus malabarica.

0040–4020/01/\$ - see front matter © 2001 Elsevier Science Ltd. All rights reserved. PII: S0040-4020(01)00723-2

^{*} Corresponding author. Tel.: +81-426-76-3007; fax: +81-426-77-1436; e-mail: takeyak@ps.toyaku.ac.jp

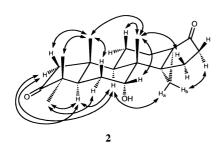


Figure 2. Selected NOESY correlations for malabanones A (1) and B (2).

1.16 and 1.17), a cyclopropane ring (δ 1.31 and 1.60, both d, J=5.0 Hz) and two olefinic protons conjugated with a carbonyl group (δ 5.84 and 7.04, both d, J=10.2 Hz). IR spectrum suggested the presence of a hydroxyl group ($3502~{\rm cm}^{-1}$) and a conjugated ketone ($1668~{\rm cm}^{-1}$) which was also supported by the characteristic UV absorption at 224 nm ($\log \epsilon$ 4.19). Analysis of the $^{13}{\rm C}$ NMR and HMBC spectra suggested the presence of two ketone groups at C-3 and C-17, a hydroxyl group at C-7, and a cyclopropane ring consisting of C-13, C-14 and C-18. The stereochemistry of 1 was determined by the analysis of NOESY spectrum (Fig. 2). Correlations between H-5 and H-9, H₃-19 and H-11_{β}, H₃-30 and H-11_{β}, H-9 and H-18_{α}, and H-12 α and H-18_{α}

revealed that the A/B and B/C ring junctures were both in *trans* relations and that the cyclopropane ring was in α -orientation. The correlation noted between H₃-30 and H-7, and the small *J*-value (2.2 Hz) between H-7 and H-6 $_{\beta}$ revealed that the C-7 hydroxyl group was in an axially-oriented α -configuration. From these observations, malabanone A was determined to have structure **1** shown in Fig. 1.

Malabanone B (2) was obtained as amorphous powder. Its molecular formula was determined to be C₂₁H₃₀O₃ by HREIMS. Comparison of the ¹H and ¹³C NMR spectra of 2 with those of 1 showed that 2 had the same B, C, D and E rings as 1 and that, accordingly, the structural differences between the two compounds resided in the A ring. Analysis of the ¹³C NMR and HMBC spectra revealed that the A ring of 2 had a substituted cyclopentanone structure. The presence of a non-conjugated cyclopentanone was also supported by the IR absorption at 1733 cm⁻¹. The HMBC correlations between C-3 and H-1 $_{\alpha}$, H-1 $_{\beta}$, H₃-29 and H₃-28 suggested that the ketone group was present at C-3. The NOESY correlations between H-5 and H-9, H₃-19 and H₃-30, and H-6_B and H₃-19 showed that the A/B ring juncture of 2 was in trans relation (Fig. 2). From these observations, malabanone B was determined to have structure 2 shown in Fig. 1.

Although a large number of triterpenes have been isolated from natural sources, nortriterpenoids with no side chain on ring D are very few. Further, malabanones A (1) and B (2) possess a unique and unusual tricyclo[4.3.1.0^{1.6}]decane structure. Since compounds 1-3, all possessing the same B-C-D-E ring structure, were isolated from the same plant source, some biosynthetic relations may be suggested among them. A possible biogenetic pathway from ailanthol (3) to malabanones A (1) and B (2) is proposed in Scheme 1. Both oxidative scission of the $C_{17}-C_{20}$ bond and oxidation

Scheme 1. A possible biosynthetic scheme for malabanones A (1) and B (2) from ailanthol (3).

of the C-3 hydroxyl group of **3** take place to produce a diketo intermediate **X**. Dehydrogenation of **X** affords malabanone A (**1**), whereas further oxidation of **X** produces a 2,3,17-triketo intermediate **Y**, which undergoes a benzilic acid-type rearrangement to produce an α -hydroxy acid **Z**. By successive oxidative decarboxylation, **Z** affords malabanone B (**2**).

Malabanones A (1) and B (2) showed a weak cytotoxic activity on P-388 murine leukemia cells with IC_{50} values of 16 and 38 μ g/mL, respectively, and ailanthol (3) a moderate activity with an IC_{50} value of 4.2 μ g/mL.

1. Experimental

1.1. General

Optical rotations were measured on a Jasco DIP-360 digital polarimeter. UV spectra were taken on a Hitachi 557 spectrophotometer. IR spectra were measured on a Perkin–Elmer 1710 spectrophotometer. NMR spectra were measured on Bruker DRX-500 and DPX-400 spectrometers. Mass spectra were obtained on a VG AutoSpec E spectrometer. Prep. MPLC was performed on a Kusano C.I.G. system equipped with a Kusano KU 331 UV detector (at 220 nm) and a Labo System RI-98 RI detector. HPLC was performed on a Shimadzu LC-6AD system equipped with a SPD-10A UV detector (at 220 nm) and a reversed-phase

column, Wakosil-II 5C18HG Prep (5 μ m, 20×250 mm), using mixed solvent systems of MeOH/H₂O at a flow rate of 5 mL/min.

1.2. Plant material

Ailanthus malabarica DC was collected in the Penang Botanical Garden, Malaysia in January, 1997. It was authenticated by comparison with a voucher specimen previously deposited at School of Pharmaceutical Sciences, University of Science Malaysia, Minden, Penang, Malaysia.

1.3. Extraction and isolation

Dried and ground stem bark of *A. malabarica* (1.5 kg) was extracted successively with hot hexane, CH_2Cl_2 and MeOH at boiling temperature. The solvent of the CH_2Cl_2 extract was removed in vacuo and the residue (65 g) was chromatographed over Si gel (Merck 70–230 mesh, 1.3 kg) with $CHCl_3$ containing an increasing amount of MeOH. A total of nine fractions were collected. The fourth fraction (6.00 g) was separated by MPLC (Si gel, 50 μ m, 40×500 mm) with hexane/CHCl₃/MeOH (6:3:1) to give five fractions. The second fraction (2.26 g) was separated by HPLC using MeOH/H₂O (90:10) to afford compound **3** (520.2 mg, 0.035%, t_R =39.2 min). The third fraction (1.13 g) of the above mentioned MPLC was separated by MPLC (RP-18, 40–63 μ m, 22×300 mm) using MeOH/H₂O (85:15) to afford eight fractions. The fourth fraction (23.6 mg) was

Table 1. ¹H and ¹³C NMR chemical shifts assignments for malabanones A (1) and B (2) in CDCl₃

	1 ^a		2 ^b		
Position	$\delta_{ m C}$	$\delta_{ m H}$	$\delta_{ m C}$	δ_{H}	
1	159.0	7.04 (d, 10.2)	55.8	α 1.94 (dq, 15.5, 1.1) β 2.20 (d, 15.5)	
2	125.7	5.84 (d, 10.2)		F =:== (=, ====)	
3	205.0		223.4		
4	44.3		45.5		
5	43.8	2.39 (dd, 12.0, 3.4)	50.0	2.30 (dd, 12.8, 3.1)	
6	25.5	α 1.76 (dt, 14.1, 3.4)	25.0	α 1.74 (dt, 13.8, 3.1)	
		β 1.80 (ddd, 14.1, 12.0, 2.2)		β 1.82 (ddd, 13.8, 12.8, 2.4)	
7	72.7	3.98 (br s)	73.2	4.01 (br s)	
8	39.9		40.2		
9	39.1	1.46 (dd, 12.5, 1.8)	43.2	1.55 (m)	
10	39.3	(, , , , , , , , , , , , , , , , , , ,	41.0		
11	17.1	α 1.38 (m)	18.8	α 1.15 (m)	
		β 1.52 (m)		β 1.42 (m)	
12	20.6	α 2.53 (dd, 14.3, 7.5)	19.8	α 2.44 (dd, 14.7, 7.8)	
		β 1.62 (m)		β 1.62 (m)	
13	34.3	1	34.5		
14	42.2		42.0		
15	22.2	α 1.87 (m)	22.4	α 1.87 (m)	
		β 2.16 (m)		β 2.20 (m)	
16	32.6	α 2.21 (m)	32.5	α 2.23 (m)	
		β 2.11 (m)		β 2.10 (m)	
17	214.5	1	214.7		
18	27.0	a 1.60 (d, 5.0)	27.0	a 1.65 (d, 4.9)	
		b 1.31 (d, 5.0)		b 1.32 (d, 4.9)	
19	19.6	1.14 (s)	17.9	0.91 (d, 1.1)	
28	27.6	1.16 (s)	27.3	1.05 (s)	
29	21.4	1.10 (s)	21.1	0.99 (s)	
30	20.8	1.17 (s)	19.6	1.14 (s)	

Chemical shifts are reported in ppm relative to residual CHCl₃ resonance at 7.26 ppm for ¹H NMR and CDCl₃ resonance at 77.03 ppm for ¹³C NMR. Multiplicity and J-values in Hz are given in parentheses.

^a The spectra were obtained at 500 MHz for ¹H NMR and 125 MHz for ¹³C NMR.

^b The spectra were obtained at 400 MHz for ¹H NMR and 100 MHz for ¹³C NMR.

separated by HPLC using MeOH/H₂O (50:50) to afford compounds **1** (2.0 mg, 0.00013%, t_R =157.8 min) and **2** (2.3 mg, 0.00015%, t_R =162.0 min).

1.3.1. Malabanone A (1). Amorphous powder; $[\alpha]_D = -15^\circ$ (c 0.04, CHCl₃); UV (MeOH) λ_{max} nm (log ϵ): 224 (4.19); IR (film) $\nu_{\text{max}} \text{cm}^{-1}$: 3502, 2944, 1708, 1668, 1457, 1386, 1052; ¹H and ¹³C NMR: refer to Table 1; HMBC correlations: H-1 (C-3, C-5, C-10), H-2 (C-4, C-10), H-5 (C-1, C-4, C-6, C-7, C-10, C-19, C-28, C-29), H-6_{α} (C-5, C-7, C-10), H-6_B (C-5, C-10), H-7 (C-5, C-6, C-9, C-30), H-9 (C-1, C-5, C-8, C-10, C-11, C-14, C-19, C-30), H-11 $_{\alpha}$ (C-9, C-12), H-11_{β} (C-9, C-12, C-13), H-12_{α} (C-9, C-11, C-13, C-17, C-18), H-12_{β} (C-11, C-13, C-14, C-18), H-15_{α} (C-13, C-14, C-16, C-17, C-18), H-15_{β} (C-14, C-18), H-16_{α} (C-15, C-17), H-16_B (C-13, C-14, C-15, C-17), H-18_a (C-8, C-12, C-13, C-14, C-15, C-17), H-18_b (C-8, C-12, C-13, C-14, C-15, C-17), H₃-19 (C-1, C-5, C-9, C-10), H₃-28 (C-3, C-4, C-5, C-29), H₃-29 (C-3, C-4, C-5, C-28), H_{3} -30 (C-7, C-8, C-9, C-14); EIMS m/z (%): 342 (M^{+} , 7), 325 (24), 324 (100), 311 (39); HREIMS calcd for C₂₂H₂₈O₂ [M-H₂O]⁺ 324.2089, found 324.2061.

1.3.2. Malabanone B (2). Amorphous powder; $[\alpha]_D$ =+60° (c 0.04, CHCl₃); UV (MeOH) $\lambda_{\rm max}$ nm (log ϵ): 210 (3.68), 276 (2.31); IR (film) $\nu_{\rm max}$ cm⁻¹: 3475, 2938, 1733, 1714, 1456, 1386, 1058; ¹H and ¹³C NMR: refer to Table 1; HMBC correlations: H-1_α (C-3, C-9, C-10, C-19), H-1_β (C-3, C-4, C-5, C-10, C-19), H-5 (C-4, C-6, C-7, C-9, C-10, C-19, C-28, C-29), H-6_α (C-5, C-7, C-8, C-10), H-6_β (C-5, C-10), H-7 (C-5, C-9), H-9 (C-8, C-10, C-11, C-12, C-19, C-30), H-11_α (C-8, C-13), H-11_β (C-12), H-12_α

(C-9, C-11, C-13, C-17, C-18), H-12 $_{\beta}$ (C-11, C-13, C-14, C-18), H-15 $_{\alpha}$ (C-13, C-14, C-16, C-17, C-18), H-15 $_{\beta}$ (C-14, C-17, C-18), H-16 $_{\alpha}$ (C-15, C-17), H-16 $_{\beta}$ (C-14, C-15, C-17), H-18 $_{\alpha}$ (C-8, C-12, C-13, C-14, C-15, C-17), H-18 $_{\alpha}$ (C-11, C-12, C-13, C-14, C-15, C-17), H₃-19 (C-1, C-5, C-9, C-10), H₃-28 (C-3, C-4, C-5, C-29), H₃-29 (C-3, C-4, C-5, C-28), H₃-30 (C-7, C-8, C-14); EIMS m/z (%): 330 (M $^{+}$, 15), 312 (100), 300 (57), 163 (55), 105 (52), 91 (57), 41 (66); HREIMS calcd for $C_{21}H_{30}O_{3}$ 330.2195, found 330.2207.

References

- Kirtikar, Lt.-C. K. R.; Basu, M. B. D. *Indian Medicinal Plants*, Vol. 1; International Book Distributors: Dehra Dun, 1935; pp. 506–507.
- 2. Perry, L. M. Medicinal Plants of East and Southeast Asia; The MIT: Massachusetts, 1980; p. 388.
- Joshi, B. S.; Kamat, V. N.; Pelletier, S. W.; Go, K.; Bhandary, K. Tetrahedron Lett. 1985, 26, 1273–1276.
- For example see: (a) Provan, G. J.; Waterman, P. G. *Phytochemistry* 1986, 25, 917–922. (b) Kadota, S.; Terashima, S.; Kikuchi, T.; Namba, T. *Tetrahedron Lett.* 1992, 33, 255–256. (c) Rogers, C. B. *Phytochemistry* 1995, 40, 833–836.
- Ferguson, G.; Gunn, P. A.; Marsh, W. C.; McCrindle, R.; Restivo, R.; Connolly, J. D.; Fulke, J. W. B.; Henderson, M. S. Chem. Commun. 1973, 159–160.
- Kashiwada, Y.; Fujioka, T.; Chang, J.-J.; Chen, I.-S.; Mihashi, K.; Lee, K.-H. J. Org. Chem. 1992, 57, 6946–6953.
- 7. Ang, H. H.; Hitotsuyanagi, Y.; Takeya, K. *Tetrahedron Lett.* **2000**, *41*, 6849–6853.